Selective coordination is an electrical system design practice that improves reliability. The methodology increases uptime by limiting power outages to the branch of an electrical system where a problem occurs without knocking out other areas of the system. When a fault happens, the closest overcurrent protective device opens, either a breaker or a fuse, ensuring that any faults don’t cascade upstream.

Breaker coordination refers to the use of breakers specifically—including the latest electronic trip breakers—to isolate electrical problems, stop nuisance tripping and avoid system-wide blackouts. In addition to limiting an outage to the shorted or overloaded branch circuit, breaker coordination makes it easier for electricians to investigate causes of faults, identify underrated or overloaded equipment, and make corrections. Power can typically be restored faster than when upstream breakers are tripped, especially if a panel board has been taken down.

This ABB Management Technology Briefing reviews the regulatory issues and technical challenges related to breaker coordination to help designers understand how system engineers take operational needs, functional requirements (current and future), and safety into consideration.

When critical power fails: Lost of business, lost of customers
It’s difficult to put an exact dollar figure on the impact of unexpected power losses. Most organizations are extremely reluctant to share any information about such failures, but they still sometimes make the news. In recent years data center power failures have temporarily knocked out a number of well-known Internet-based businesses, disabling operations and halting business transactions. Ranging from less than an hour to more than 24 hours, major sites that have gone down include Amazon, CraigsList, Technorati, and Intuit.

A 2011 study by the Ponemon Institute, an independent research organization, found that data center downtime costs over $500,000 per incident on average, or $5,600 per minute. Of the 41 data centers that participated in the study, 95% had experienced one or more unplanned outages over the past two years. Downtime costs increase dramatically for enterprises that depend on IT and those that provide online services to customers, such as telecommunication and e-commerce companies. For these companies the cost for a power outage averages $11,000 or more per minute. Primary failure causes cited in the study were uninterruptible power supply battery failure, accidents/human error, and water, heat or cooling system failures.
In other sectors power failures have disrupted surgical operations in hospitals, stranded rail transit passengers, and even disabled oxygen and water systems on the international space station. In most of these cases backup power systems existed. Those systems simply didn’t function properly. Generators failed to kick in. UPS systems failed to operate. Switches faulted. Such incidences, often predictable in retrospect, emphasize the need for frequent system testing and maintenance, especially when facilities or equipment are added or upgraded. Properly configured, breaker coordination provides one more line of defense against unplanned power outages.

Vital load applications

Driving the world’s online economy, today’s massive data centers often house thousands of servers. These computer systems have zero tolerance for power loss, which is why data centers have some of the world’s most technologically sophisticated standby power systems. These systems typically include backup generators, uninterruptible power supplies, and distribution systems that respond instantly if the primary source of power is interrupted.

For these data centers and many financial, government and military applications, as well as chemical and food processing plants, the risks and potential losses that could result from a system failure easily justify any incremental design and construction costs required for selectively coordinating the electrical system. In some applications selective coordination is required by the electrical code.

The National Fire Protection Association’s (NFPA) National Electrical Code (NEC®) requires selective coordination where the improved system reliability protects public safety and for emergency management and national security operations. Examples include patient-care areas of hospitals, emergency services, security operations, and water and gas distribution facilities.

From design note to regulatory requirement

As a regulatory requirement, selective coordination has evolved over the past 20 years, most significantly over the past decade. Selective coordination was first required for elevator circuits in the 1993 edition of the NEC. During the 2005 NEC revision cycle, the Code Making Panel elevated selective coordination from a design consideration to a mandatory requirement in Articles 700.27 and 701.18 for emergency and legally required standby systems (See box on the 2011 NEC). These sections of the code state a number of requirements that are intended to ensure that electrical systems remain operational during catastrophic events, as well as unexpected power losses. The selective coordination requirements apply to both normal sources of power and standby sources.

Prompted in part by the system failures during the 9/11 attacks and hurricane Katrina, the U.S. Department of Homeland Security asked NFPA to add new requirements related to national security, which became a new section in the 2008 NEC edition: Article 708, Critical Operations Power Systems (COPS). Critical operations power systems are defined as those in “vital infrastructure facilities that, if destroyed or incapacitated, would disrupt national security, the economy, public health or safety.” It requires selective coordination for these critical loads.

Selective coordination in the 2011 NEC

The National Fire Protection Association has sponsored the National Electrical Code since 1911. The original code was developed in 1897 as a result of efforts by insurance, electrical, architectural, and allied interests. The code requirements are interpreted and enforced by local electrical inspectors as designated by the relevant governing bodies. Inspectors typically are not experts in selective coordination. The electrical system engineer will provide documentation about overcurrent device type, ampere ratings, and equipment settings that bears his or her professional seal verifying that the system is selectively coordinated.

The primary goal of the selective coordination requirements in the NEC is to protect health and safety and maintain operations during national security events and catastrophic events. Article 517 Health Care Facilities incorporates the requirements of Section 700.27 for hospitals, doctor examination rooms, nursing homes and similar facilities. The specific requirements are: 700.27 Coordination. Emergency system(s) overcurrent devices shall be selectively coordinated with all supply side overcurrent protective devices.

NFPA, National Fire Protection Association, National Electrical Code, and NEC are registered trademarks of the National Fire Protection Association.
Personnel safety
analyze breaker performance characteristics. Key priorities
manufacturers, or by using computer software that helps
by manually overlaying the breaker curves provided by
components.
changing system and tenant requirements for example—will
implement, and fairly inexpensive. It allows even high limit
values. The types of breaker specified will vary depending on
the application. Options include molded-case circuit breakers,
insulated-case circuit breakers with short time-delays, low-
voltage breakers, thermal magnetic breakers, and high
performance electronic trip circuit breakers, which can be set
so the trip curves don’t overlap. The system designer must
also consider ground fault protection systems, which can
introduce coordination issues.
Generally speaking, there are four types of selectivity:
current selectivity, time selectivity, zone selectivity, and energy
selectivity.
Current selectivity is based on the observation that the closer
the fault is to the power supply, the higher the short-circuit
current will be. A fault can therefore be discriminated simply
by setting a protection device to a limit value that does not
generate unwarranted trips. Total discrimination can only be
obtained this way in cases where the fault current is not very
high or where a component with high impedance is placed
between the two protection devices, such as a transformer or
a very long cable.
This type of coordination is intrinsically rapid (instantaneous),
easy to implement and relatively inexpensive. But, the
selectivity limit current is normally low so discrimination is
only partial, the threshold setting of the overcurrent protection
devices limits the ability to reduce damage caused by short-
circuits, and it’s impossible to provide redundant protection
that provides protection if a device fails.
Time selectivity offers another level of protection. Using
this type of coordination, a given current value will trip the
protection devices after an established time delay that allows
breakers closer to the fault to trip first. The strategy is to
progressively increase the current thresholds and the trip
time delays the closer one gets to the power supply source.
Selective trip curves, often of the open type, must be
used to guarantee a sufficiently high short-time withstand
current. As with current type selectivity, the study is
carried out by comparing the time-current protection
device trip curves.
This type of coordination is generally easy to study and
implement, and fairly inexpensive. It allows even high limit
discrimination levels to be obtained, depending on the short
time withstand current of the supply side device and allows
redundant protection functions. Drawbacks include the
potential for high levels of energy to pass through, creating
the potential for equipment damage. The other circuit-
breakers must also be capable of withstanding the thermal
and electro-dynamic stresses related to the passage of the
fault current for the intentional time delay. The duration of
the disturbance induced by the short-circuit current on the
power supply voltages can also pose some problems for
electromechanical and electronic devices.
Zone selectivity is a further evolution of time coordination.
Generally speaking, it is implemented by linking current
measuring devices. When these devices detect that the
setting threshold has been exceeded, a central supervision
system cuts the power supply to the zone affected by the
fault. Or, when current values exceed the set threshold, each
protection device sends a blocking signal to the protection
device higher on the supply side (in relation to the direction
of the power flow) and, before it trips, makes sure that a similar
blocking signal has not arrived from the protection device on
the load side. This way, only the protection device immediately
to the supply side of the fault is tripped.

Energy-based selectivity exploits the current limiting
characteristics of molded-case circuit-breakers. In this case
the energy associated with the load side circuit-breaker trip is
lower than the energy value needed to complete the opening
of the supply side circuit-breaker. To ensure acceptable
reliability, energy-based coordination calculations should be
integrated with the current limiting curves and other breaker
information. The discrimination level is not limited by the value
of the short-time current withstand by the devices.

This type of selectivity is more difficult to implement than the
previous options because it depends largely on the interaction
between the two devices placed in series (wave forms, etc.)
and requires access to data often unavailable to the end user.
The advantages of using this type of coordination include fast
trip times that become shorter as the short-circuit current
increases. This reduces the potential damage caused by the
fault (thermal and dynamic stresses) and the disturbance to the
power supply system. This approach also allows different
current-limiting devices (fuses, circuit-breakers, etc.) to be
corded, even when located in intermediate positions along the
chain.

The chart below is a graphical representation of a downstream
branch breaker (B curve) and a main breaker (A curve) with
selective coordination. The separation between the curves
means that the branch breaker will react to a fault faster while
the main breaker remains closed and energized.

For optimum reliability, today's electrical systems require
multiple levels of protection. It's not uncommon for selective
coordination to be overlooked during system design
and equipment selection. A selective coordination study
conducted before equipment installation will determine the
proper configuration and show the impact of short circuits
and overloads on facility operation. Retrofitting an electrical
system to make it selectively coordinated—in response to
changing system and tenant requirements for example—will
typically require additional costs and new electrical system
components.

Electrical engineers perform selective coordination studies
by manually overlaying the breaker curves provided by
manufacturers, or by using computer software that helps
analyze breaker performance characteristics. Key priorities
when making equipment selection decisions include:

- Personnel safety
- Equipment protection

- Rapid problem identification
- Backup protection if any device malfunctions
- Balance between system reliability and cost effectiveness.

If the analysis is focused on device protection because of
overcurrent releases, the strategy used to coordinate the
devices depends on the rated current and short-circuit current
values. The types of breaker specified will vary depending on
the application. Options include molded-case circuit breakers,
insulated-case circuit breakers with short time-delay options,
low-voltage breakers, thermal magnetic breakers, and high
performance electronic trip circuit breakers, which can be set
so the trip curves don’t overlap. The system designer must
also consider ground fault protection systems, which can
introduce coordination issues.
Generally speaking, there are four types of selectivity:
current selectivity, time selectivity, zone selectivity, and energy
selectivity.
Current selectivity is based on the observation that the closer
the fault is to the power supply, the higher the short-circuit
current will be. A fault can therefore be discriminated simply
by setting a protection device to a limit value that does not
generate unwarranted trips. Total discrimination can only be
obtained this way in cases where the fault current is not very
high or where a component with high impedance is placed
between the two protection devices, such as a transformer or
a very long cable.
This type of coordination is intrinsically rapid (instantaneous),
easy to implement and relatively inexpensive. But, the
selectivity limit current is normally low so discrimination is
only partial, the threshold setting of the overcurrent protection
devices limits the ability to reduce damage caused by short-
circuits, and it’s impossible to provide redundant protection
that provides protection if a device fails.
Time selectivity offers another level of protection. Using
this type of coordination, a given current value will trip the
protection devices after an established time delay that allows
breakers closer to the fault to trip first. The strategy is to
progressively increase the current thresholds and the trip
time delays the closer one gets to the power supply source.
Selective trip curves, often of the open type, must be
used to guarantee a sufficiently high short-time withstand
current. As with current type selectivity, the study is
carried out by comparing the time-current protection
device trip curves.
This type of coordination is generally easy to study and
implement, and fairly inexpensive. It allows even high limit
discrimination levels to be obtained, depending on the short
time withstand current of the supply side device and allows
redundant protection functions. Drawbacks include the
potential for high levels of energy to pass through, creating
the potential for equipment damage. The other circuit-
breakers must also be capable of withstanding the thermal
and electro-dynamic stresses related to the passage of the
fault current for the intentional time delay. The duration of
the disturbance induced by the short-circuit current on the
power supply voltages can also pose some problems for
electromechanical and electronic devices.
Zone selectivity is a further evolution of time coordination.
Generally speaking, it is implemented by linking current
measuring devices. When these devices detect that the
setting threshold has been exceeded, a central supervision
system cuts the power supply to the zone affected by the
fault. Or, when current values exceed the set threshold, each
protection device sends a blocking signal to the protection
device higher on the supply side (in relation to the direction
of the power flow) and, before it trips, makes sure that a similar
blocking signal has not arrived from the protection device on
the load side. This way, only the protection device immediately
to the supply side of the fault is tripped.

In this example of selective coordination the graph shows the response
to short circuit of 20.8 kA (almost 3X the rated capacity) of an ABB S200
current-limiting breaker (red line). Compared to a zero-crossing breaker,
which could require as long as 8.3 milliseconds, the current limiting
breaker tripped in 1.7 milliseconds, one-quarter of an AC cycle. The
upstream breaker (blue line) never saw enough energy to trip, remaining
closed and operational.

Equipment selection and final testing
UL defines breaker current limitation as a breaker that
interrupts and isolates a fault in less than one-half of an AC
cycle, which takes 8.3 milliseconds. A typical zero point
extinguishing breaker will interrupt a fault, but it will not isolate
the energy. The breaker allows arcing to be present between the
open contacts until the AC wave form crosses zero (as long as 8.3 seconds).
When the wave form crosses zero, the potential energy is zero and the arc
(fault) naturally extinguishes.
Recent improvements in circuit breaker technology has pushed the response
time and tripping characteristics of electronic trip breakers to the same level as fuses. With
these microcomputer-equipped breakers, a microcomputer can be take to make samples
of the current's waveform. The microcomputer
then uses these samples to calculate the value of the load
current. This allows the breaker to react faster. By design
electronic breakers offer increased trip repeatability and
accuracy that does not vary depending on the weather or
environmental conditions.

Coordination using a current limiting breaker
It should be noted that series ratings are different from
coordination ratings. Unlike coordination ratings where the

branch opens and the main remains closed, a series rated combination is one where both the branch and main breakers open and work together to isolate the fault. The series rating combination of two breakers is equal to the “stand alone” interrupting value of the main breaker. During a short circuit the main breaker will limit the energy to a level that is below the “stand alone” value of the branch breaker.

Competent system designers know that arc flash hazards increase with the current magnitude and the time that current is permitted to flow. Short-time delay settings on circuit breakers can therefore increase arc flash incident energy and potential equipment damage. To prevent this some short-time delay breakers have a maintenance option that can be switched to an instantaneous trip setting when necessary to protect worker safety. In the event of a fault, having a current-limiting touchsafe panelboard, such as the ProLine Panelboard by ABB, also allows technicians to safety perform maintenance on each branch.

Before startup, testing and commissioning of the electrical system verifies that all backup equipment and breaker coordination is operating and has been setup properly. This final step, which should involve in-house maintenance personnel, is essential to make sure that the system provides the anticipated reliability.

Because of the specialized components, analysis requirements and additional installation time, it requires a greater investment to install a breaker coordinated electrical system. Based on the cost impact of unexpected downtime, it’s a business management decision to factor the risks and determine whether the incremental expense is worth the enhanced reliability.

For more information please contact:

ABB Inc.
Low Voltage Control Products
16250 W. Glendale Drive
New Berlin, WI 53151, USA
Phone: 1-888-385-1221
Fax: 1-800-726-1441

USA Technical help:
Phone: 1-888-385-1221, Option 4
7:30AM to 5:30PM, CST.
Monday - Friday
E-Mail: lvps.support@us.abb.com

USA Customer service:
Phone: 1-888-385-1221, Option 4
7:30AM to 5:30PM, CST.
Monday - Friday
E-Mail: abborderentry.wf@us.abb.com

www.abb.us/lowvoltage